Definitions
Leading dimensions
Many algorithms can be applied exactly the same to a variable even though it may have different dimension dependencies. For instance, a density conversion can be the same algorithm for either density {}, density {time}, density {latitude,longitude}, density {time,vertical}, etc. The algorithm is just applied element-wise for each element in the dimensions that density depends on. Such leading dimensions that can be handled element-wise are captured by a ‘:’ in the variable reference in the definitions below. Any dimensions that are significant for the conversion (for instance, the vertical dimension when integrating a vertical profile to a total column) will still be mentioned explicitly and will map to an index in the symbol used for the quantity (e.g. \(\nu(:,i)\)). If an algorithm has variables with a ‘:’ in the dimension specification then the algorithm will contain a description of which combination of dimensions are supported for ‘:’.
Constants
symbol |
name |
unit |
value |
---|---|---|---|
\(a\) |
WGS84 semi-major axis |
\(m\) |
\(6378137.0\) |
\(b\) |
WGS84 semi-minor axis |
\(m\) |
\(6356752.314245\) |
\(c\) |
speed of light |
\(\frac{m}{s}\) |
\(2.99792458\cdot10^{8}\) |
\(\frac{1}{f}\) |
WGS84 inverse flatting |
\(298.257223563\) |
|
\(g_{0}\) |
mean earth gravity |
\(\frac{m}{s^2}\) |
\(9.80665\) |
\(g_{e}\) |
earth gravity at equator |
\(\frac{m}{s^2}\) |
\(9.7803253359\) |
\(g_{p}\) |
earth gravity at poles |
\(\frac{m}{s^2}\) |
\(9.8321849378\) |
\(GM\) |
WGS84 earth’s gravitational constant |
\(\frac{m^3}{s^2}\) |
\(3986004.418\cdot10^{8}\) |
\(k\) |
Boltzmann constant |
\(\frac{kg m^2}{K s^2}\) |
\(1.38064852\cdot10^{-23}\) |
\(N_A\) |
Avogadro constant |
\(\frac{1}{mol}\) |
\(6.022140857\cdot10^{23}\) |
\(p_{0}\) |
standard pressure |
\(Pa\) |
\(101325\) |
\(R\) |
universal gas constant |
\(\frac{kg m^2}{K mol s^2}\) |
\(8.3144598\) |
\(T_{0}\) |
standard temperature |
\(K\) |
\(273.15\) |
\(\omega\) |
WGS84 earth angular velocity |
\(rad/s\) |
\(7292115.0\cdot10^{-11}\) |
Molar mass
The following table provides for each species the molar mass \(M_{x}\) in \(\frac{g}{mol}\).
See the documentation on the HARP data format for a description of all species.
name |
molar mass |
---|---|
dry air |
28.9644 |
BrO |
95.9034 |
BrO2 |
111.9028 |
CCl2F2 |
120.9135 |
CCl3F |
137.3681 |
CCl4 |
153.822 |
CF4 |
88.00431 |
CHClF2 |
86.4684 |
CH3Cl |
50.48752 |
CH3CN |
41.05192 |
CH3OH |
32.04186 |
CH4 |
16.0425 |
CO |
28.0101 |
COF2 |
66.0069 |
COS |
60.0751 |
CO2 |
44.0095 |
C2H2 |
26.0373 |
C2H2O2 |
58.036163 |
C2H6 |
30.0690 |
C2H3NO5 |
121.04892 |
C3H8 |
44.09562 |
C5H8 |
68.11702 |
ClNO3 |
97.4579 |
ClO |
51.4524 |
HCHO |
30.026 |
HCOOH |
46.0254 |
HCN |
27.0253 |
HCl |
36.4609 |
HF |
20.006343 |
HNO2 |
47.013494 |
HNO3 |
63.0129 |
HNO4 |
79.0122 |
HOCl |
52.4603 |
HO2 |
33.00674 |
H2O |
18.0153 |
H2O_161 |
1.00782503207 + 15.99491461956 + 1.00782503207 |
H2O_162 |
1.00782503207 + 15.99491461956 + 2.0141017778 |
H2O_171 |
1.00782503207 + 16.99913170 + 1.00782503207 |
H2O_181 |
1.00782503207 + 17.9991610 + 1.00782503207 |
H2O2 |
34.01468 |
IO |
142.903873 |
NH3 |
17.03056 |
NO |
30.00610 |
NOCl |
65.4591 |
NO2 |
46.00550 |
NO3 |
62.0049 |
N2 |
28.01340 |
N2O |
44.0129 |
N2O5 |
108.0104 |
OClO |
67.4518 |
OH |
17.00734 |
O2 |
32.000 |
O3 |
47.99820 |
O3_666 |
15.99491461956 + 15.99491461956 + 15.99491461956 |
O3_667 |
15.99491461956 + 15.99491461956 + 16.99913170 |
O3_668 |
15.99491461956 + 15.99491461956 + 17.9991610 |
O3_686 |
15.99491461956 + 17.9991610 + 15.99491461956 |
O4 |
63.9976 |
SF6 |
146.0554 |
SO2 |
64.0638 |