Common formula
gravity
Newton’s gravitational law
symbol
description
unit
\(g\)
normal gravity at sea level
\(\frac{m}{s^2}\)
\(g_{h}\)
gravity at specific height
\(\frac{m}{s^2}\)
\(z\)
altitude
\(m\)
\(R\)
local earth curvature radius
\(m\)
\[g_{h} = g\left(\frac{R}{R + z}\right)^2\]Normal gravity at sea level ellipsoid
This is the WGS84 ellipsoidal gravity formula as taken from NIMA TR8350.2
symbol
name
unit
\(a\)
WGS84 semi-major axis
\(m\)
\(b\)
WGS84 semi-minor axis
\(m\)
\(e\)
eccentricity
\(m\)
\(g\)
normal gravity at sea level
\(\frac{m}{s^2}\)
\(g_{e}\)
gravity at equator
\(\frac{m}{s^2}\)
\(g_{p}\)
gravity at poles
\(\frac{m}{s^2}\)
\(\phi\)
latitude
\(degN\)
\begin{eqnarray} e^2 & = & \frac{a^2-b^2}{a^2} \\ k & = & \frac{bg_{p} - ag_{e}}{ag_{e}} \\ g & = & g_{e}\frac{1 + k {\sin}^2(\frac{\pi}{180}\phi)}{\sqrt{1 - e^2{\sin}^2(\frac{\pi}{180}\phi)}} \\ g & = & 9.7803253359 \frac{1 + 0.00193185265241{\sin}^2(\frac{\pi}{180}\phi)} {\sqrt{1 - 0.00669437999013{\sin}^2(\frac{\pi}{180}\phi)}} \end{eqnarray}Gravity at specific altitude
This is the WGS84 ellipsoidal gravity formula as taken from NIMA TR8350.2
symbol
name
unit
\(a\)
WGS84 semi-major axis
\(m\)
\(b\)
WGS84 semi-minor axis
\(m\)
\(f\)
WGS84 flattening
\(m\)
\(g\)
normal gravity at sea level
\(\frac{m}{s^2}\)
\(g_{h}\)
gravity at specific height
\(\frac{m}{s^2}\)
\(GM\)
WGS84 earth’s gravitational constant
\(\frac{m^3}{s^2}\)
\(z\)
altitude
\(m\)
\(\phi\)
latitude
\(degN\)
\(\omega\)
WGS84 earth angular velocity
\(rad/s\)
The formula used is the one based on the truncated Taylor series expansion:
\begin{eqnarray} m & = & \frac{\omega^2a^2b}{GM} \\ g_{h} & = & g \left[ 1 - \frac{2}{a}\left(1+f+m-2f{\sin}^2(\frac{\pi}{180}\phi)\right)z + \frac{3}{a^2}z^2 \right] \\ \end{eqnarray}
geopotential height
symbol
description
unit
\(g\)
normal gravity at sea level
\(\frac{m}{s^2}\)
\(g_{0}\)
mean earth gravity
\(\frac{m}{s^2}\)
\(g_{h}\)
gravity at specific height
\(\frac{m}{s^2}\)
\(p\)
pressure
\(Pa\)
\(R\)
local earth curvature radius
\(m\)
\(z\)
altitude
\(m\)
\(z_{g}\)
geopotential height
\(m\)
\(\phi\)
latitude
\(degN\)
\(\rho\)
mass density
\(\frac{kg}{m^3}\)
The geopotential height allows the gravity in the hydrostatic equation
\[dp = - \rho g_{h} dz\]to be replaced by a constant gravity
\[dp = - \rho g_{0} dz_{g}\]providing
\[dz_{g} = \frac{g_{h}}{g_{0}}dz\]With Newton’s gravitational law this becomes
\[dz_{g} = \frac{g}{g_{0}}\left(\frac{R}{R + z}\right)^2dz\]And integrating this, considering that \(z=0\) and \(z_{g}=0\) at sea level, results in
\[z_{g} = \frac{g}{g_{0}}\frac{Rz}{R + z}\]\[z = \frac{g_{0}Rz_{g}}{gR-g_{0}z_{g}}\]
gas constant
symbol
name
unit
\(k\)
Boltzmann constant
\(\frac{kg m^2}{K s^2}\)
\(N_A\)
Avogadro constant
\(\frac{1}{mol}\)
\(R\)
universal gas constant
\(\frac{kg m^2}{K mol s^2}\)
Relation between Boltzmann constant, universal gas constant, and Avogadro constant:
\[k = \frac{R}{N_A}\]
ideal gas law
symbol
name
unit
\(k\)
Boltzmann constant
\(\frac{kg m^2}{K s^2}\)
\(N\)
amount of substance
\(molec\)
\(p\)
pressure
\(Pa\)
\(R\)
universal gas constant
\(\frac{kg m^2}{K mol s^2}\)
\(T\)
temperature
\(K\)
\(V\)
volume
\(m^3\)
\[pV = \frac{NRT}{N_{A}} = NkT\]
barometric formula
symbol
name
unit
\(g_{0}\)
mean earth gravity
\(\frac{m}{s^2}\)
\(g_{h}\)
gravity at specific height
\(\frac{m}{s^2}\)
\(k\)
Boltzmann constant
\(\frac{kg m^2}{K s^2}\)
\(M_{air}\)
molar mass of total air
\(\frac{g}{mol}\)
\(N\)
amount of substance
\(molec\)
\(N_A\)
Avogadro constant
\(\frac{1}{mol}\)
\(p\)
pressure
\(Pa\)
\(R\)
universal gas constant
\(\frac{kg m^2}{K mol s^2}\)
\(T\)
temperature
\(K\)
\(V\)
volume
\(m^3\)
\(z\)
altitude
\(m\)
\(z_{g}\)
geopotential height
\(m\)
\(\phi\)
latitude
\(degN\)
\(\rho\)
mass density
\(\frac{kg}{m^3}\)
From the ideal gas law we have:
\[p = \frac{NkT}{V} = \frac{10^{-3}NM_{air}}{VN_{a}}\frac{kTN_{a}}{10^{-3}M_{air}} = \rho\frac{RT}{10^{-3}M_{air}}\]And from the hydrostatic assumption we get:
\[dp = - \rho g_{h} dz\]Dividing \(dp\) by p we get:
\[\frac{dp}{p} = -\frac{10^{-3}M_{air}\rho g_{h} dz}{\rho RT} = -\frac{10^{-3}M_{air}g_{h}dz}{RT}\]Integrating this expression from one pressure level to the next we get:
\[p(i+1) = p(i)e^{-\int^{z(i+1)}_{z(i)}\frac{10^{-3}M_{air}g_{h}}{RT}dz}\]We can approximate this further by using an average value of the height dependent quantities \(M_{air}\), \(g_{h}\) and \(T\) for the integration over the range \([z(i),z(i+1)]\). This gives:
\begin{eqnarray} g' & = & g_{h}(\phi,\frac{z(i)+z(i+1)}{2}) \\ p(i+1) & = & p(i)e^{-10^{-3}\frac{M_{air}(i)+M_{air}(i+1)}{2}\frac{2}{T(i)+T(i+1)}\frac{g'}{R}\left(z(i+1)-z(i)\right)} \\ & = & p(i)e^{-10^{-3}\frac{M_{air}(i)+M_{air}(i+1)}{T(i)+T(i+1)}\frac{g'}{R}\left(z(i+1)-z(i)\right)} \end{eqnarray}When using geopotential height the formula is the same except that \(g=g_{0}\) at all levels:
\[p(i+1) = p(i)e^{-10^{-3}\frac{M_{air}(i)+M_{air}(i+1)}{T(i)+T(i+1)}\frac{g_{0}}{R}\left(z_{g}(i+1)-z_{g}(i)\right)}\]
mass density
symbol
name
unit
\(N\)
amount of substance
\(molec\)
\(N_A\)
Avogadro constant
\(\frac{1}{mol}\)
\(M_{air}\)
molar mass of total air
\(\frac{g}{mol}\)
\(V\)
volume
\(m^3\)
\(\rho\)
mass density
\(\frac{kg}{m^3}\)
\[\rho = \frac{10^{-3}NM_{air}}{VN_{a}}\]
number density
symbol
name
unit
\(n\)
number density
\(\frac{molec}{m^3}\)
\(N\)
amount of substance
\(molec\)
\(V\)
volume
\(m^3\)
\[n = \frac{N}{V}\]
dry air vs. total air
symbol
name
unit
\(n\)
number density of total air
\(\frac{molec}{m^3}\)
\(n_{dry\_air}\)
number density of dry air
\(\frac{molec}{m^3}\)
\(n_{H_{2}O}\)
number density of H2O
\(\frac{molec}{m^3}\)
\(M_{air}\)
molar mass of total air
\(\frac{g}{mol}\)
\(M_{dry\_air}\)
molar mass of dry air
\(\frac{g}{mol}\)
\(M_{H_{2}O}\)
molar mass of H2O
\(\frac{g}{mol}\)
\(\rho\)
mass density of total air
\(\frac{kg}{m^3}\)
\(\rho_{dry\_air}\)
mass density of dry air
\(\frac{kg}{m^3}\)
\(\rho_{H_{2}O}\)
mass density of H2O
\(\frac{kg}{m^3}\)
\begin{eqnarray} n & = & n_{dry\_air} + n_{H_{2}O} \\ M_{air}n & = & M_{dry\_air}n_{dry\_air} + M_{H_{2}O}n_{H_{2}O} \\ \rho & = & \rho_{dry\_air} + \rho_{H_{2}O} \\ \end{eqnarray}
virtual temperature
symbol
name
unit
\(k\)
Boltzmann constant
\(\frac{kg m^2}{K s^2}\)
\(M_{air}\)
molar mass of total air
\(\frac{g}{mol}\)
\(M_{dry\_air}\)
molar mass of dry air
\(\frac{g}{mol}\)
\(M_{H_{2}O}\)
molar mass of H2O
\(\frac{g}{mol}\)
\(N\)
amount of substance
\(molec\)
\(N_A\)
Avogadro constant
\(\frac{1}{mol}\)
\(p\)
pressure
\(Pa\)
\(p_{dry\_air}\)
dry air partial pressure
\(Pa\)
\(p_{H_{2}O}\)
H2O partial pressure
\(Pa\)
\(R\)
universal gas constant
\(\frac{kg m^2}{K mol s^2}\)
\(T\)
temperature
\(K\)
\(T_{v}\)
virtual temperature
\(K\)
\(V\)
volume
\(m^3\)
From the ideal gas law we have:
\[p = \frac{NkT}{V} = \frac{10^{-3}NM_{air}}{VN_{a}}\frac{kTN_{a}}{10^{-3}M_{air}} = \rho \frac{RT}{10^{-3}M_{air}}\]The virtual temperature allows us to use the dry air molar mass in this equation:
\[p = \rho\frac{RT_{v}}{10^{-3}M_{dry\_air}}\]This gives:
\[T_{v} = \frac{M_{dry\_air}}{M_{air}}T\]
volume mixing ratio
symbol
name
unit
\(n\)
number density of total air
\(\frac{molec}{m^3}\)
\(n_{dry\_air}\)
number density of dry air
\(\frac{molec}{m^3}\)
\(n_{H_{2}O}\)
number density of H2O
\(\frac{molec}{m^3}\)
\(n_{x}\)
number density of quantity x
\(\frac{molec}{m^3}\)
\(\nu_{x}\)
volume mixing ratio of quantity x with regard to total air
\(ppv\)
\(\bar{\nu}_{x}\)
volume mixing ratio of quantity x with regard to dry air
\(ppv\)
\begin{eqnarray} \nu_{x} & = & \frac{n_{x}}{n} \\ \bar{\nu}_{x} & = & \frac{n_{x}}{n_{dry\_air}} \\ \nu_{dry\_air} & = & \frac{n_{dry\_air}}{n} = \frac{n - n_{H_{2}O}}{n} = 1 - \nu_{H_{2}O} \\ \nu_{air} & = & \frac{n}{n} = 1 \\ \bar{\nu}_{dry\_air} & = & \frac{n_{dry\_air}}{n_{dry\_air}} = 1 \\ \bar{\nu}_{H_{2}O} & = & \frac{n_{H_{2}O}}{n_{dry\_air}} = \frac{\nu_{H_{2}O}}{\nu_{dry\_air}} = \frac{\nu_{H_{2}O}}{1 - \nu_{H_{2}O}} \\ \nu_{H_{2}O} & = & \frac{\bar{\nu}_{H_{2}O}}{1 + \bar{\nu}_{H_{2}O}} \end{eqnarray}
mass mixing ratio
symbol
name
unit
\(M_{air}\)
molar mass of total air
\(\frac{g}{mol}\)
\(M_{dry\_air}\)
molar mass of dry air
\(\frac{g}{mol}\)
\(M_{x}\)
molar mass of quantity x
\(\frac{g}{mol}\)
\(n\)
number density of total air
\(\frac{molec}{m^3}\)
\(n_{dry\_air}\)
number density of dry air
\(\frac{molec}{m^3}\)
\(n_{H_{2}O}\)
number density of H2O
\(\frac{molec}{m^3}\)
\(n_{x}\)
number density of quantity x
\(\frac{molec}{m^3}\)
\(q_{x}\)
mass mixing ratio of quantity x with regard to total air
\(\frac{kg}{kg}\)
\(\bar{q}_{x}\)
mass mixing ratio of quantity x with regard to dry air
\(\frac{kg}{kg}\)
\(\nu_{x}\)
volume mixing ratio of quantity x with regard to total air
\(ppv\)
\(\bar{\nu}_{x}\)
volume mixing ratio of quantity x with regard to dry air
\(ppv\)
\begin{eqnarray} q_{x} & = & \frac{n_{x}M_{x}}{nM_{air}} = \nu_{x}\frac{M_{x}}{M_{air}} \\ \bar{q}_{x} & = & \frac{n_{x}M_{x}}{n_{dry\_air}M_{dry\_air}} = \bar{\nu}_{x}\frac{M_{x}}{M_{dry\_air}} \\ q_{dry\_air} & = & \frac{n_{dry\_air}M_{dry\_air}}{nM_{air}} = \frac{nM_{air} - n_{H_{2}O}M_{H_{2}O}}{nM_{air}} = 1 - q_{H_{2}O} \\ q_{air} & = & \frac{nM_{air}}{nM_{air}} = 1 \\ \bar{q}_{dry\_air} & = & \frac{n_{dry\_air}M_{dry\_air}}{n_{dry\_air}M_{dry\_air}} = 1 \\ \bar{q}_{H_{2}O} & = & \frac{n_{H_{2}O}M_{H_{2}O}}{n_{dry\_air}M_{dry\_air}} = \frac{q_{H_{2}O}}{q_{dry\_air}} = \frac{q_{H_{2}O}}{1 - q_{H_{2}O}} \\ q_{H_{2}O} & = & \frac{\bar{q}_{H_{2}O}}{1 + \bar{q}_{H_{2}O}} \end{eqnarray}
molar mass of total air
molar mass of total air from H2O volume mixing ratio
symbol
name
unit
\(M_{air}\)
molar mass of total air
\(\frac{g}{mol}\)
\(M_{dry\_air}\)
molar mass of dry air
\(\frac{g}{mol}\)
\(M_{H_{2}O}\)
molar mass of H2O
\(\frac{g}{mol}\)
\(n\)
number density of total air
\(\frac{molec}{m^3}\)
\(n_{dry\_air}\)
number density of dry air
\(\frac{molec}{m^3}\)
\(n_{H_{2}O}\)
number density of H2O
\(\frac{molec}{m^3}\)
\(\nu_{H_{2}O}\)
volume mixing ratio of H2O
\(ppv\)
\begin{eqnarray} M_{air} & = & \frac{M_{dry\_air}n_{dry\_air} + M_{H_{2}O}n_{H_{2}O}}{n} \\ & = & M_{dry\_air}\left(1 - \nu_{H_{2}O}\right) + M_{H_{2}O}\nu_{H_{2}O} \end{eqnarray}molar mass of total air from H2O mass mixing ratio
symbol
name
unit
\(M_{air}\)
molar mass of total air
\(\frac{g}{mol}\)
\(M_{dry\_air}\)
molar mass of dry air
\(\frac{g}{mol}\)
\(M_{H_{2}O}\)
molar mass of H2O
\(\frac{g}{mol}\)
\(n\)
number density of total air
\(\frac{molec}{m^3}\)
\(n_{dry\_air}\)
number density of dry air
\(\frac{molec}{m^3}\)
\(n_{H_{2}O}\)
number density of H2O
\(\frac{molec}{m^3}\)
\(q_{H_{2}O}\)
mass mixing ratio of H2O
\(\frac{kg}{kg}\)
\(\nu_{H_{2}O}\)
volume mixing ratio of H2O
\(\frac{kg}{kg}\)
\begin{eqnarray} M_{air} & = & M_{dry\_air}\left(1 - \nu_{H_{2}O}\right) + M_{H_{2}O}\nu_{H_{2}O} \\ & = & M_{dry\_air}\left(1 - \frac{M_{air}}{M_{H_{2}O}}q_{H_{2}O}\right) + M_{air}q_{H_{2}O} \\ & = & \frac{M_{dry\_air}}{1 + \frac{M_{dry\_air}}{M_{H_{2}O}}q_{H_{2}O} - q_{H_{2}O}} \\ & = & \frac{M_{H_{2}O}M_{dry\_air}}{M_{H_{2}O} + M_{dry\_air}q_{H_{2}O} - M_{H_{2}O}q_{H_{2}O}} \\ & = & \frac{M_{H_{2}O}M_{dry\_air}}{\left(1-q_{H_{2}O}\right)M_{H_{2}O} + q_{H_{2}O}M_{dry\_air}} \\ \end{eqnarray}
partial pressure
symbol
name
unit
\(p\)
total pressure
\(Pa\)
\(p_{x}\)
partial pressure of quantity
\(Pa\)
\(\nu_{x}\)
volume mixing ratio of quantity x with regard to total air
\(ppv\)
\(\bar{\nu}_{x}\)
volume mixing ratio of quantity x with regard to dry air
\(ppv\)
\begin{eqnarray} p_{x} & = & \nu_{x}p \\ p_{x} & = & \bar{\nu}_{x}p_{dry\_air} \\ p_{x} & = & N_{x}kT \end{eqnarray}
saturated water vapor pressure
symbol
name
unit
\(e_{w}\)
saturated water vapor pressure
\(Pa\)
\(T\)
temperature
\(K\)
This is the August-Roche-Magnus formula for the saturated water vapor pressure
\[e_{w} = 610.94e^{\frac{17.625(T-273.15)}{(T-273.15)+243.04}}\]