geopotential height derivations

  1. geopotential height from geopotential

    symbol

    description

    unit

    variable name

    g0

    mean earth gravity

    ms2

    zg

    geopotential height

    m

    geopotential_height {:}

    Φ

    geopotential

    m2s2

    geopotential {:}

    The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all.

    zg=Φg0
  2. geopotential height from altitude

    symbol

    description

    unit

    variable name

    g0

    mean earth gravity

    ms2

    g

    nominal gravity at sea level

    ms2

    R

    local earth curvature radius

    m

    z

    altitude

    m

    altitude {:}

    zg

    geopotential height

    m

    geopotential_height {:}

    ϕ

    latitude

    degN

    latitude {:}

    The pattern : for the dimensions can represent {vertical}, {time}, {time,vertical}, or no dimensions at all.

    g=9.78032533591+0.00193185265241sin2(π180ϕ)10.00669437999013sin2(π180ϕ)R=1(cos(π180ϕ)6356752.0)2+(sin(π180ϕ)6378137.0)2zg=gg0Rzz+R
  3. geopotential height from pressure

    symbol

    description

    unit

    variable name

    g0

    mean earth gravity

    ms2

    Mair(i)

    molar mass of total air

    gmol

    molar_mass {:,vertical}

    p(i)

    pressure

    Pa

    pressure {:,vertical}

    psurf

    surface pressure

    Pa

    surface_pressure {:}

    R

    universal gas constant

    kgm2Kmols2

    T(i)

    temperature

    K

    temperature {:,vertical}

    zg(i)

    geopotential height

    m

    geopotential_height {:,vertical}

    zg,surf

    surface geopotential height

    m

    surface_geopotential_height {:}

    The pattern : for the dimensions can represent {latitude,longitude}, {time}, {time,latitude,longitude}, or no dimensions at all.

    The surface pressure psurf and surface height zg,surf need to use the same definition of ‘surface’.

    The pressures p(i) are expected to be at higher levels than the surface pressure (i.e. lower values). This should normally be the case since even for pressure grids that start at the surface, psurf should equal the lower pressure boundary pB(1,1), whereas p(1) should then be between pB(1,1) and pB(1,2) (which is generally not equal to pB(1,1)).

    zg(1)=zg,surf+103T(1)Mair(1)Rg0ln(psurfp(i))zg(i)=zg(i1)+103T(i1)+T(i)Mair(i1)+Mair(i)Rg0ln(p(i1)p(i)),1<iN
  4. surface geopotential height from surface geopotential

    symbol

    description

    unit

    variable name

    g0

    mean earth gravity

    ms2

    zg,surf

    surface geopotential height

    m

    surface_geopotential_height {:}

    Φsurf

    surface geopotential

    m2s2

    surface_geopotential {:}

    The pattern : for the dimensions can represent {latitude,longitude}, {time}, {time,latitude,longitude}, or no dimensions at all.

    zg,surf=Φsurfg0
  5. surface geopotential height from surface altitude

    symbol

    description

    unit

    variable name

    g0

    mean earth gravity

    ms2

    g

    nominal gravity at sea level

    ms2

    R

    local earth curvature radius

    m

    zsurf

    surface altitude

    m

    surface_altitude {:}

    zg,surf

    surface geopotential height

    m

    surface_geopotential_height {:}

    ϕ

    latitude

    degN

    latitude {:}

    The pattern : for the dimensions can represent {latitude,longitude}, {time}, {time,latitude,longitude}, or no dimensions at all.

    g=9.78032533591+0.00193185265241sin2(π180ϕ)10.00669437999013sin2(π180ϕ)R=1(cos(π180ϕ)6356752.0)2+(sin(π180ϕ)6378137.0)2zg,surf=gg0Rzsurfzsurf+R