longitude bounds derivations
longitude ranges from midpoints
symbol
description
unit
variable name
\(\lambda(i)\)
longitude
\(degE\)
longitude {:,longitude}
\(\lambda^{B}(i,l)\)
longitude boundaries (\(l \in \{1,2\}\))
\(degE\)
longitude_bounds {:,longitude,2}
The pattern : for the dimensions can represent {time}, or no dimension at all.
\begin{eqnarray} \lambda^{B}(1,1) & = & \frac{3\lambda(1) - \lambda(2)}{2} \\ \lambda^{B}(i,1) & = & \frac{\lambda(i-1) + \lambda(i)}{2}, 1 < i \leq N \\ \lambda^{B}(i,2) & = & \lambda^{B}(i+1,1), 1 \leq i < N \\ \lambda^{B}(N,2) & = & \frac{3\lambda(N) - \lambda(N-1)}{2} \end{eqnarray}This formula applies if the harp option
regrid_out_of_bounds
is set tonan
or toextrapolate
. If the option is set toedge
then the first and last boundary value are set to the midpoints (\(\lambda^{B}(1,1) = \lambda(1)\), \(\lambda^{B}(N,2) = \lambda(N)\)).