solar hour angle derivations
solar hour angle from datetime and longitude
symbol
description
unit
variable name
\(EOT\)
equation of time
\(minutes\)
\(t\)
datetime (UTC)
\(s\) since 2000-01-01
datetime {time}
\(\eta\)
orbit angle of the earth around the sun
\(rad\)
\(\lambda\)
longitude
\(degE\)
longitude {time}
\(\omega\)
solar hour angle
\(deg\)
solar_hour_angle {time}
\begin{eqnarray} A & = & 2\pi \left( \frac{t + 10 \cdot 86400}{365.2422 \cdot 86400} - \lfloor \frac{t + 10 \cdot 86400}{365.2422 \cdot 86400} \rfloor \right) \\ B & = & A + 2 \cdot 0.0167 \sin( 2\pi \left( \frac{t - 2 \cdot 86400}{365.2422 \cdot 86400} - \lfloor \frac{t - 2 \cdot 86400}{365.2422 \cdot 86400} \rfloor \right) ) \\ C & = & \frac{A - \arctan(\frac{\tan(B)}{cos(\frac{\pi}{180} 23.44)})}{\pi} \\ EOT & = & 720 \left( C - \lfloor C + 0.5 \rfloor \right) \\ \omega & = & \lambda + 360 \left( \frac{t}{86400} - \lfloor \frac{t}{86400} \rfloor + \frac{EOT}{24 \cdot 60} \right) - 180 \end{eqnarray}The solar hour angle will be mapped to [-180,180].