mass density derivations

  1. mass density of air component from number density

    symbol

    description

    unit

    variable name

    Mx

    molar mass of air component x

    gmol

    nx

    number density of air component x (e.g. nO3)

    molecm3

    <species>_number_density {:}

    NA

    Avogadro constant

    1mol

    ρx

    mass density of air component x (e.g. ρO3)

    kgm3

    <species>_density {:}

    The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all.

    ρx=103nxMxNA
  2. mass density of total air from number density

    symbol

    description

    unit

    variable name

    Mair

    molar mass of total air

    gmol

    molar_mass {:}

    n

    number density of total air

    molecm3

    number_density {:}

    NA

    Avogadro constant

    1mol

    ρ

    mass density of total air

    kgm3

    density {:}

    The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all.

    ρ=103nMairNA
  3. mass density of air component from column mass density

    symbol

    description

    unit

    variable name

    zB(l)

    altitude boundaries (l{1,2})

    m

    altitude_bounds {:,2}

    ρx

    mass density of air component x (e.g. ρO3)

    kgm3

    <species>_density {:}

    σx

    column mass density of air component x (e.g. cO3)

    kgm2

    <species>_column_density {:}

    The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all.

    ρx=σx|zB(2)zB(1)|
  4. mass density of total air from dry air mass density and H2O mass density

    symbol

    description

    unit

    variable name

    ρ

    mass density

    kgm3

    density {:}

    ρdry_air

    mass density of dry air

    kgm3

    dry_air_density {:}

    ρH2O

    mass density of H2O

    kgm3

    H2O_density {:}

    The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all.

    ρ=ρdry_air+ρH2O
  5. mass density of dry air from total air mass density and H2O mass density

    symbol

    description

    unit

    variable name

    ρ

    mass density

    kgm3

    density {:}

    ρdry_air

    mass density of dry air

    kgm3

    dry_air_density {:}

    ρH2O

    mass density of H2O

    kgm3

    H2O_density {:}

    The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all.

    ρdry_air=ρρH2O
  6. mass density of H2O from total air mass density and dry air mass density

    symbol

    description

    unit

    variable name

    ρ

    mass density

    kgm3

    density {:}

    ρdry_air

    mass density of dry air

    kgm3

    dry_air_density {:}

    ρH2O

    mass density of H2O

    kgm3

    H2O_density {:}

    The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all.

    ρH2O=ρρdry_air
  7. mass density of total air from column mass density

    symbol

    description

    unit

    variable name

    zB(l)

    altitude boundaries (l{1,2})

    m

    altitude_bounds {:,2}

    ρ

    mass density of total air

    kgm3

    density {:}

    σ

    column mass density of total air

    kgm2

    column_density {:}

    The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all.

    ρ=σ|zB(2)zB(1)|