solar azimuth angle derivations
solar azimuth angle from latitude and solar declination/hour/zenith angles
symbol
description
unit
variable name
\(\theta_{0}\)
solar zenith angle
\(deg\)
solar_zenith_angle {time}
\(\delta\)
solar declination angle
\(deg\)
solar_declination_angle {time}
\(\phi\)
latitude
\(degN\)
latitude {time}
\(\varphi_{0}\)
solar azimuth angle
\(deg\)
solar_azimuth_angle {time}
\(\omega\)
solar hour angle
\(deg\)
solar_hour_angle {time}
\begin{eqnarray} \varphi_{0} & = & \begin{cases} \sin(\frac{\pi}{180}\theta_{0}) = 0, & 0 \\ \sin(\frac{\pi}{180}\theta_{0}) \neq 0 \wedge \omega > 0, & -\frac{180}{\pi}\arccos(\frac{\sin(\frac{\pi}{180}\delta)\cos(\frac{\pi}{180}\phi) - \cos(\frac{\pi}{180}\omega)\cos(\frac{\pi}{180}\delta)\sin(\frac{\pi}{180}\phi)}{\sin(\frac{\pi}{180}\theta_{0})}) \\ \sin(\frac{\pi}{180}\theta_{0}) \neq 0 \wedge \omega <= 0, & \frac{180}{\pi}\arccos(\frac{\sin(\frac{\pi}{180}\delta)\cos(\frac{\pi}{180}\phi) - \cos(\frac{\pi}{180}\omega)\cos(\frac{\pi}{180}\delta)\sin(\frac{\pi}{180}\phi)}{\sin(\frac{\pi}{180}\theta_{0})}) \end{cases} \end{eqnarray}