gravity derivations

  1. normal gravity at sea level from latitude

    symbol

    description

    unit

    variable name

    \(g\)

    normal gravity at sea level

    \(\frac{m}{s^2}\)

    gravity {:}

    \(\phi\)

    latitude

    \(degN\)

    latitude {:}

    The pattern : for the dimensions can represent {latitude,longitude}, {time}, {time,latitude,longitude}, or no dimensions at all.

    \[\begin{eqnarray} g & = & 9.7803253359 \frac{1 + 0.00193185265241{\sin}^2(\frac{\pi}{180}\phi)} {\sqrt{1 - 0.00669437999013{\sin}^2(\frac{\pi}{180}\phi)}} \end{eqnarray}\]
  2. gravity at specific altitude

    symbol

    name

    unit

    variable name

    \(a\)

    WGS84 semi-major axis

    \(m\)

    \(b\)

    WGS84 semi-minor axis

    \(m\)

    \(f\)

    WGS84 flattening

    \(m\)

    \(g_{h}\)

    gravity at specific height

    \(\frac{m}{s^2}\)

    gravity {:,vertical}

    \(g\)

    normal gravity at sea level

    \(\frac{m}{s^2}\)

    gravity {:}

    \(GM\)

    WGS84 earth’s gravitational constant

    \(\frac{m^3}{s^2}\)

    \(z\)

    altitude

    \(m\)

    altitude {:,vertical}

    \(\phi\)

    latitude

    \(degN\)

    latitude {:}

    \(\omega\)

    WGS84 earth angular velocity

    \(rad/s\)

    The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all.

    \begin{eqnarray} m & = & \frac{\omega^2a^2b}{GM} \\ g_{h} & = & g \left[ 1 - \frac{2}{a}\left(1+f+m-2f{\sin}^2(\frac{\pi}{180}\phi)\right)z + \frac{3}{a^2}z^2 \right] \\ \end{eqnarray}
  3. gravity at earth surface

    symbol

    name

    unit

    variable name

    \(a\)

    WGS84 semi-major axis

    \(m\)

    \(b\)

    WGS84 semi-minor axis

    \(m\)

    \(f\)

    WGS84 flattening

    \(m\)

    \(g_{surf}\)

    gravity at surface altitude

    \(\frac{m}{s^2}\)

    surface_gravity {:}

    \(g\)

    normal gravity at sea level

    \(\frac{m}{s^2}\)

    gravity {:}

    \(GM\)

    WGS84 earth’s gravitational constant

    \(\frac{m^3}{s^2}\)

    \(z_{surf}\)

    surface altitude

    \(m\)

    surface_altitude {:}

    \(\phi\)

    latitude

    \(degN\)

    latitude {:}

    \(\omega\)

    WGS84 earth angular velocity

    \(rad/s\)

    The pattern : for the dimensions can represent {latitude,longitude}, {time}, {time,latitude,longitude}, or no dimensions at all.

    \begin{eqnarray} m & = & \frac{\omega^2a^2b}{GM} \\ g_{surf} & = & g \left[ 1 - \frac{2}{a}\left(1+f+m-2f{\sin}^2(\frac{\pi}{180}\phi)\right)z + \frac{3}{a^2}z^2 \right] \\ \end{eqnarray}