partial pressure derivations

  1. partial pressure from number density and temperature

    symbol

    description

    unit

    variable name

    \(k\)

    Boltzmann constant

    \(\frac{kg m^2}{K s^2}\)

    \(n_{x}\)

    number density of air component x (e.g. \(n_{O_{3}}\))

    \(\frac{molec}{m^3}\)

    <species>_number_density {:}

    \(p_{x}\)

    partial pressure of air component x (e.g. \(p_{O_{3}}\))

    \(Pa\)

    <species>_partial_pressure {:}

    \(T\)

    temperature

    \(K\)

    temperature {:}

    The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all.

    \[p_{x} = n_{x}kT\]
  2. partial pressure from volume mixing ratio

    symbol

    description

    unit

    variable name

    \(p\)

    pressure

    \(Pa\)

    pressure {:}

    \(p_{x}\)

    partial pressure of air component x (e.g. \(p_{O_{3}}\))

    \(Pa\)

    <species>_partial_pressure {:}

    \(\nu_{x}\)

    volume mixing ratio of air component x (e.g. \(\nu_{O_{3}}\))

    \(ppv\)

    <species>_volume_mixing_ratio {:}

    The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all.

    \[p_{x} = \nu_{x}p\]
  3. partial pressure from volume mixing ratio dry air

    symbol

    description

    unit

    variable name

    \(p_{x}\)

    partial pressure of air component x (e.g. \(p_{O_{3}}\))

    \(Pa\)

    <species>_partial_pressure {:}

    \(\bar{\nu}_{x}\)

    volume mixing ratio of air component x (e.g. \(\nu_{O_{3}}\))

    \(ppv\)

    <species>_volume_mixing_ratio_dry_air {:}

    The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all.

    \[p_{x} = \bar{\nu}_{x}p_{dry\_air}\]