partial pressure derivations
partial pressure from number density and temperature
symbol
description
unit
variable name
\(k\)
Boltzmann constant
\(\frac{kg m^2}{K s^2}\)
\(n_{x}\)
number density of air component x (e.g. \(n_{O_{3}}\))
\(\frac{molec}{m^3}\)
<species>_number_density {:}
\(p_{x}\)
partial pressure of air component x (e.g. \(p_{O_{3}}\))
\(Pa\)
<species>_partial_pressure {:}
\(T\)
temperature
\(K\)
temperature {:}
The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all.
\[p_{x} = n_{x}kT\]partial pressure from volume mixing ratio
symbol
description
unit
variable name
\(p\)
pressure
\(Pa\)
pressure {:}
\(p_{x}\)
partial pressure of air component x (e.g. \(p_{O_{3}}\))
\(Pa\)
<species>_partial_pressure {:}
\(\nu_{x}\)
volume mixing ratio of air component x (e.g. \(\nu_{O_{3}}\))
\(ppv\)
<species>_volume_mixing_ratio {:}
The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all.
\[p_{x} = \nu_{x}p\]partial pressure from volume mixing ratio dry air
symbol
description
unit
variable name
\(p_{x}\)
partial pressure of air component x (e.g. \(p_{O_{3}}\))
\(Pa\)
<species>_partial_pressure {:}
\(\bar{\nu}_{x}\)
volume mixing ratio of air component x (e.g. \(\nu_{O_{3}}\))
\(ppv\)
<species>_volume_mixing_ratio_dry_air {:}
The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all.
\[p_{x} = \bar{\nu}_{x}p_{dry\_air}\]