temperature derivations

  1. temperature from pressure and number density

    symbol

    description

    unit

    variable name

    \(k\)

    Boltzmann constant

    \(\frac{kg m^2}{K s^2}\)

    \(n\)

    number density

    \(\frac{molec}{m^3}\)

    number_density {:}

    \(p\)

    pressure

    \(Pa\)

    pressure {:}

    \(T\)

    temperature

    \(K\)

    temperature {:}

    The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all.

    \[T = \frac{p}{kn}\]
  2. temperature from virtual temperature

    symbol

    description

    unit

    variable name

    \(M_{air}\)

    molar mass of total air

    \(\frac{g}{mol}\)

    molar_mass {:}

    \(M_{dry\_air}\)

    molar mass of dry air

    \(\frac{g}{mol}\)

    \(T\)

    temperature

    \(K\)

    temperature {:}

    \(T_{v}\)

    virtual temperature

    \(K\)

    virtual_temperature {:}

    The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all.

    \[T = \frac{M_{air}}{M_{dry\_air}}T_{v}\]
  3. surface temperature from surface pressure and surface number density

    symbol

    description

    unit

    variable name

    \(k\)

    Boltzmann constant

    \(\frac{kg m^2}{K s^2}\)

    \(n_{surf}\)

    surface number density

    \(\frac{molec}{m^3}\)

    surface_number_density {:}

    \(p_{surf}\)

    surface pressure

    \(Pa\)

    surface_pressure {:}

    \(T_{surf}\)

    surface temperature

    \(K\)

    surface_temperature {:}

    The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all.

    \[T_{surf} = \frac{p_{surf}}{kn_{surf}}\]